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Prelude

Despite that physical space-time has a Minkowski structure, the interest in formulating a relativistic
theory (QFT) in an Euclidean metric was already present in the very early days 

It was first applied by G. Wick to solve the Bethe-Salpeter equation: “Wick rotation” k0=ik4

G. Wick,  Properties of the Bethe-Salpeter wave functions,  Phys. Rev. 96 (1954) 1124

and formulated in a more general QFT framework soon later
J. Schwinger

On the Euclidean structure of relativistic field theory, Proc. Natl. Acad. Sci. U.S.A 44 (1958) 95

Euclidean Quantum Electrodynamics, Phys Rev  (1959) 721

K. Symanzik  
Euclidean Quantum Field Theory I. Equations for a scalar model, J. Math. Phys. 7 (1966) 510

Euclidean Quantum Field Theory in Local Quantum Field Theory, Ed. by R. Jost, Academic Press Ne York (1969) 

International School of Physics Enrico Fermi,  Course XLV, Ed. by R. Jost (1968)

This interest was enhanced by the success of Lattice calculations, where it is mandatory !
The main theoretical problem is to prove the equivalence between both formulations
K. Osterwalder and E. Schrader,  Axioms for Euclidean QFT, Comm. Math. Phys. 42 (1975) 440

Gave conditions for a QFT to ensure that the “analytic continuation” of  Green functions can
be safely done (no singularities) …but  they are not yet proved for theories of interest 
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Prelude

The practical benefit of Minkowski -> Euclidean is clear : 
Everything becomes smooth (allowing standard methods for solving integral equations) 
Euclidean actions SE becomes positive definite (allowing path integrals)
……

Much less clear is what is lost when using an Euclidean formulation…

I   Form factors F(Q2) in time-like region are not allowed  
It is even not clear that the space-like are correctly computed

II  Scattering is lost: 
Maiani-Testa “no go theorem“ PLB 245 (1990) 585: no scattering in infinite euclidean space
However circunvented in LQCD finite volume by “Luscher method”    

III Problems for introducing chemical potential (at T>0)

….
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Luscher method (87)

In the simplest case: ground state ε0(L) provides the scattering length A0

4.1 Low energy scattering parameters

For a coupling constant G < G0 = 1.68, the two-body system in the infinite volume has only
scattering states while in a finite box the spectrum is constituted by a series of discrete values.

In his first work devoted to this subject [3], Luscher established a relation between
the two-body binding energy ϵn(L) on a 3-dimensional spacial lattice with periodic boundary
conditions and the corresponding scattering length. For the S-wave ground state energy ϵ0(L)
it reads [22]

ϵ0(L) =
4πA0

(aL)3

{

1 + c1

(

A0

aL

)

+ c2

(

A0

aL

)2

+ . . .

}

(22)

where A0 is the infinite volume scattering length and c1 = 2.837297 and c2 = 6.375183 are
universal constants, independent of the details of the particular dynamics. This relation was
proved to be valid in non relativistic quantum mechanics as well as in quantum field theory and
must be considered as an asymptotic series on powers of A0/(aL). For attractive potentials,
and with our convention for the scattering length, one has A0(G < G0) < 0 and consequently
ϵ0(L) < 0.

Equation (22) is the most popular of the Luscher relations and has been widely used
in lattice calculations to extract the value of A0 from a fit to the computed ϵ0(L). We adopt a
slightly different point of view by constructing from the ϵ0(L) values, quantities tending to A0

– the quantity we are interested in – for large values of aL. This merely consists in inverting
(22).

To this aim it is interesting to consider slowly varying functions and to use – rather
than ϵ0(L) – the combination

A(0)
0 (L) ≡

1

4π
(aL)3ϵ0(L) (23)

It tends asymptotically (aL → ∞) to the infinite volume scattering length A0 and constitutes
the zero-th order approximation of Luscher expansion which can be written as

A(0)
0 (L) = A0

{

1 + c1

(

A0

aL

)

+ c2

(

A0

aL

)2

+ . . .

}

(24)

It is possible to get a series A(n)
0 (L) of improved values converging towards A0 by solving

equation (24) truncated at the order n for a fixed value of L. One thus obtains, for instance

A(2)
0 (L) = aL z(2) (25)

where z(2) is a solution of the cubic equation

z(c2z
2 + c1z + 1) =

A(0)
0 (L)

aL

This expansion is however of small practical interest for it requires lattice sizes one or
two order of magnitude larger than the scattering length, as it was already noticed in reference
[9].

Figure 9 represents the A(0)
0 (L) results for the ground state obtained with G = 0.40

and a = 0.20. Dashed lines correspond to the solutions with the infinite volume interaction

12

c1 and c2 are universal known coefficients 

Energy levels εn(L) of 2-particle in a periodic box (L) provide phase-shifts

More involved expressions provide the phase shifts
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It works well ! …but has problems with open channels and for large lattices 



Prelude

General results are sometimes too deep to be clear….
Bethe-Salpeter (BS) framework is an ideal landscape to have some light on this problem

I
Formulated in terms of BS amplitude which - contrary to wave functions – have a clear
definition in terms of QFT and is accessible to LQCD

II 
It fulfills a 4D integral equation which - in its (simplified) version – can be solved both in
Euclidean and Minkowski space

Aim of this talk :

I Present a method for obtaining BS scattering solutions in Minkowski space
II Discuss the problem with Euclidean BS scattering solutions
III Obtain a purely Euclidean equation for zero energy (scattering length)

Alternative to Luscher method in Lattice calculations
IV Present possible extension to non zero energies (Effective Range approximation)



Introduction

Bethe Salpeter equation deals with a - pre-existing - QFT object (Gell-Mann Low)

Its Fourier transform Φ(k,P)

2 BS

Γ(k, P ) =

∫

d4k′

(2π)4
iK(k, k′; P ) S1(p

′
1) S2(p

′
2) Γ(k′, P ) (1)

ΦE(k4, k⃗) ≡ ΦM (k0 = ik4, k⃗)

ΦM(k0, k⃗) ≡ ΦE(k4 = −ik0, k⃗)

(p2
1,E + m2)(p2

2,E + m2)ΦE(p4, p⃗) = g2

∫

dk4dk⃗

(2π)4

1

(p − k)2
E + µ2

ΦE(k4, k⃗)

(p0, p ≡| p⃗ |)

Φ(x1, x2, P ) =< 0 | T{φ(x1)φ(x2)} | P > (2)

often expressed in terms of his Fourier transfom

Φ(x1, x2, P ) =

∫

dp1

(2π)4

dp2

(2π)4
Φ(p1, p2) e−iPx e−ikx

= e−iPx

∫

dk

(2π)4
Φ(k, P ) e−ikx (3)

where P = p1 + p2 2k = p1 − p2

3 BSMINK

∫

dβ Φ(k + βω, p) =

∫

dβ G(12)
0 (k + βω, p)

∫

d4k′

(2π)4
iK(k + βω, k′, p) Φ(k′, p) (4)

V (γ, z, γ′, z′) =

{

W (γ, z, γ′, z′) if −1 ≤ z′ ≤ z
W (γ,−z, γ′,−z′) if z ≤ z′ ≤ 1

(5)

avec

W (γ, z, γ′, z′) =
αm2

2π

(1 − z)2

γ + m2z2 + κ2(1 − z2)

∫ 1

0

v2

D2(v)
dv (6)

et

D(γ, z, γ′, z′, v) = v(1 − v)(1 − z′)γ + (1 − z)[(1 − v)µ2 + vγ′]
+ vm2 [(1 − v)(1 − z′)z2 + vz′2(1 − z) ]
+ vκ2(1 − z)(1 − z′) [1 + z − v(z − z′) ]

Nakanishi integral representation [?, ?]:

2

satisfies a 4D equation. For bound state case:  

1.2 Méthode graphique (fonction de vertex)

!!!!!!!

✶

p2 = P
2 − k

✏✏✏✏✏✏✏

$

p1 = P
2 + k

✉

P
=

✲p2 p′2 = P
2 − k′

✲p1
p′1 = P

2 + k′
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$
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Γ(k, P ) K(k, k′, P )

p1 + p2 = P
p1 − p2 = 2k

On suppose la ”Vertex fonction” Γ, sur qui s’appliquent les règles de Feynmann

Γ(p1, p2) ≡ Γ(k, P )

satisfaire l’équation intégrale de la figure. On obtient suivant ces règles1

Γ(k, P ) =
∫

d4k′

(2π)4
iK(k, k′;P ) S1(p1) S2(p2) Γ(k′, P ) (1)

où:

1. Si sont les propagateurs2

S1(p1) =
i

p2
1 − m2 + iϵ

=
i

(

P
2 + k

)2
− m2 + iϵ

S2(p2) =
i

p2
2 − m2 + iϵ

=
i

(

P
2 − k

)2
− m2 + iϵ

2. K est le interaction kernel, qui correspond à la boite et est donné par les diagrammes de Feynman. Pour le
cas d’echange scalaire on a3

K = −
g2

(k − k′)2 − µ2 + iϵ

Si on introduit la fonction – ou amplitude – de BS par

Φ(k, P ) = S1(k, P ) S2(k, P ) Γ(k, P )

elle obéit l’équation de BS ”canonique”

Φ(k, P ) = S1(k, P )S2(k, P )
∫

d4k′

(2π)4
iK(k, k′;P ) Φ(k′, P ) (2)

ou encore
[

(

P

2
+ k

)2

− m2

] [

(

P

2
− k

)2

− m2

]

Φ(k, P ) = −
∫

d4k′

(2π)4
iK(k, k′;P ) Φ(k′, P ) (3)

1. Correspond à l’équation (1) de EPJA 27 (2006) 1

2. Il faut faire le lien avec la definition en QFT (Low)

Φ(x1, x2) =< 0|T{φ(x1)φ(x2)}|0 >

ou les champs sont écrtis en representation d’Heisenberg

1En fait il faut iΓ de chaque coté
2S = i∆, signe de ϵ toujours opposé a celui de m
3Ne correspond pas a Gross pag 600
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iK=Interaction kernel 
- if K would contain all the IR graphs, solving (1) would be equivalent to solve the full QFT
- This is however a wishful thinking. In practice one uses a very poor restriction: ladder+simple kernels 

Si = free propagators

P2=M2 with M the total mass of the two-body system

1.2 Méthode graphique (fonction de vertex)

!!!!!!!

✶

p2 = P
2 − k

✏✏✏✏✏✏✏

$

p1 = P
2 + k

✉

P
=

✲p2 p′2 = P
2 − k′

✲p1
p′1 = P

2 + k′

!!!!!!!

✶
✏✏✏✏✏✏✏

$

✉

Γ(k, P ) K(k, k′, P )

p1 + p2 = P
p1 − p2 = 2k

On suppose la ”Vertex fonction” Γ, sur qui s’appliquent les règles de Feynmann
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Γ(k, P ) =
∫

d4k′

(2π)4
iK(k, k′;P ) S1(p1) S2(p2) Γ(k′, P ) (1)

où:
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where P = p1 + p2 2k = p1 − p2
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It is usually written in terms of the “vertex function”

The amplitude Φ(k, p) is related to the two-body scattering amplitude of the process k1s+k2s →
k1 + k2 as follows

F (k, p) =
Φ(k, p)

S1(k, p)S2(k, p)

where 2k = k1 − k2 and Si are the free one-body propagators. Written in terms of F , the
inhomogeneous BS equation for two spinless particles in Minkowski space reads:

F (k; p) = K(k, ks) − i

∫

d4k′

(2π)4

K(k, k′)F (k′; p)
[

(

p
2 + k′

)2 − m2 + iϵ
] [

(

p
2 − k′

)2 − m2 + iϵ
] (2)

where the interaction kernel K is given by a set of the irreducible Feynman graphs. The different
steps of this derivation are detailed in [3, 4].

For the bound state case, the inhomogeneous term drops out and the p-dependence of the
off-mass shell amplitude F (k; p) in the center of mass (c.m.) frame appears only via p2 = M2

where M is the total mass of the system. The notation F (k0, k⃗) is then currently used.
The off-mass shell scattering amplitude, F (k; p) depends also on a parameter ks = k1s − k2s

– the incident relative momentum – which in general is not related to p. For the results we are
interested in (half off-mass shell quantities in c.m. frame) the p-dependence of the amplitude
is however related to ks by p2 = M2 = 4ε2

ks

and will be replaced in the notation by ks. We will

write hereafter: F (k; p) ≡ F (k; ks) ≡ F (k0, k⃗; ks). Taken on the mass shell k0 = 0, k = ks, the
value F (k0 = 0, k = ks) determines the phase shifts.

The original BS equation (2) was formulated in Minkowski space. Its numerical solution –
made very difficult by the singularities of the free propagators, the interaction kernel and the
amplitude itself – was not even tried until very recently [5, 6, 7, 8, 9].

For the bound state case the BS equation can be transformed, by the Wick rotation [10] of
the integration contour of the variable k0, in an Euclidean form over the variable k4 = −ik0.
The Euclidean BS amplitude FE is related to the Minkowski one FM by

FE(k4, k⃗) = FM(ik4, k⃗)

This change in the metric removes all the singularities for real values of the arguments and
solving the corresponding Euclidean equation becomes an easy numerical task. It can be shown,
at least for some simple interaction kernels [10, 6], that the Wick rotation let invariant the total
mass M and represents thus an efficient way to compute the binding energies. However the
off-mass shell amplitude F (k0, k) in the Minkowski space remains mandatory to calculate the
electromagnetic elastic form factors [11].

In contrast to the bound state, the scattering states BS equation cannot be in general
transformed into an equation for the Euclidean amplitude alone. As we will see later, when
rotating the integration contour, some singularities are crossed and one should take into account

2

1 Generalites
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2

That is

where P = p1 + p2 2k = p1 − p2

S1(p1) =
i

p2
1 − m2 + iϵ

=
i

(

P
2 + k

)2 − m2 + iϵ

S2(p2) =
i

p2
2 − m2 + iϵ

=
i

(

P
2 − k

)2 − m2 + iϵ

S1(k,P) =
i

(

P
2

+ k
)2 − m2 + iϵ

S2(k,P) =
i

(

P
2
− k

)2 − m2 + iϵ

K(k, k) = −
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3

As one can see the equation has singularities in the free propagators 
As well as in the simplest (one boson exchange ladder) kernel



Bound-state Solutions in Euclidean space

Bound states are easily solved with the “Wick rotation” k0=ik4

It leads to a smooth integral equation for the euclidean amplitude 

Minkowski (k0,k) → Euclidean (k4,k)

2 BS

Γ(k, P ) =

∫

d4k′

(2π)4
iK(k, k′; P ) S1(p

′
1) S2(p

′
2) Γ(k′, P ) (1)

Γ(k, P ) =
Φ(k, P )

S1(p1) S2(p2)

ΦE(k4, k⃗) ≡ ΦM (k0 = ik4, k⃗)

ΦM(k0, k⃗) ≡ ΦE(k4 = −ik0, k⃗)

(p2
1,E + m2)(p2

2,E + m2)ΦE(p4, p⃗) = g2

∫

dk4dk⃗

(2π)4

1

(p − k)2
E + µ2

ΦE(k4, k⃗)

(p2
1,E + m2)(p2

2,E + m2)ΦE(k4, k⃗) = g2

∫

dk′
4dk⃗′

(2π)4

1

(k − k′)2
E + µ2

ΦE(k′
4, k⃗

′)

[

(

k2
4 + k2 + m2 −

M2

4

)2
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4

)2
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4
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(2π)3

∫ ∞

0

q′2dq′
∫ +∞

−∞

dk′
4 K̄E(q, k4; q

′, k′
4) Φ(q′, k′

4)

(2)

(p0, p ≡| p⃗ |)

Φ(x1, x2, P ) =< 0 | T{φ(x1)φ(x2)} | P > (3)

often expressed in terms of his Fourier transfom

Φ(x1, x2, P ) =

∫

dp1

(2π)4

dp2

(2π)4
Φ(p1, p2) e−iPx e−ikx

= e−iPx

∫

dk

(2π)4
Φ(k, P ) e−ikx (4)

Φ(x1, x2, P ) =

∫

dp1

(2π)4

dp2

(2π)4
Φ(p1, p2) e−iPx e−ikx = e−iPx

∫

dk

(2π)4
Φ(k, P ) e−ikx

where P = p1 + p2 2k = p1 − p2

2

soluble by standard methods.

Until very recently, most of the existing solutions were found in this way

Rm: Not a simple « variable change » but a straightforward application of Cauchy theorem:2 BS
∫

γ1

f(z)dz =

∫

γ2

f(z)dz

Γ(k, P ) =

∫

d4k′

(2π)4
iK(k, k′; P ) S1(p

′
1) S2(p

′
2) Γ(k′, P ) (1)

Γ(k, P ) =
Φ(k, P )

S1(p1) S2(p2)

ΦE(k4, k⃗) ≡ ΦM (k0 = ik4, k⃗)

ΦM(k0, k⃗) ≡ ΦE(k4 = −ik0, k⃗)

(p2
1,E + m2)(p2

2,E + m2)ΦE(p4, p⃗) = g2

∫

dk4dk⃗

(2π)4

1

(p − k)2
E + µ2

ΦE(k4, k⃗)

(p2
1,E + m2)(p2

2,E + m2)ΦE(k4, k⃗) = g2

∫

dk′
4dk⃗′

(2π)4

1

(k − k′)2
E + µ2

ΦE(k′
4, k⃗

′)

[

(

k2
4 + k2 + m2 −

M2

4

)2

+ M2k2
4

]

ΦE(k4, k⃗) = g2

∫

dk′
4dk⃗′

(2π)4

1

(k − k′)2
E + µ2

ΦE(k′
4, k⃗

′)

[

(

k2
4 + q2 + m2 −

M2

4

)2

+ M2k2
4

]

Φ(q, k4) =
1

(2π)3

∫ ∞

0

q′2dq′
∫ +∞

−∞

dk′
4 K̄E(q, k4; q

′, k′
4) Φ(q′, k′

4)

(2)

(p0, p ≡| p⃗ |)

Φ(x1, x2, P ) =< 0 | T{φ(x1)φ(x2)} | P > (3)

often expressed in terms of his Fourier transfom

Φ(x1, x2, P ) =

∫

dp1

(2π)4

dp2

(2π)4
Φ(p1, p2) e−iPx e−ikx

= e−iPx

∫

dk

(2π)4
Φ(k, P ) e−ikx (4)

Φ(x1, x2, P ) =

∫

dp1

(2π)4

dp2

(2π)4
Φ(p1, p2) e−iPx e−ikx = e−iPx

∫

dk

(2π)4
Φ(k, P ) e−ikx

where P = p1 + p2 2k = p1 − p2

2

If a continous deformation between two 
paths do not cross a singularity of f(z) 

4

+iR

−iR

γ
2

1
γ

A B

+R−R

kk

kk

(1)(3)

(2)(4)

0 0

0 0

+ +

+ +
kk

k  =ik
0

0

Ex: free propagators



There are however some problems:

- The validity of the Wick rotation requires a careful analysis of kernel singularities
It is done only in some cases (ladder WC)

- The total mass M is invariant but the BS amplitude is not: impossible to recover ΦM from ΦE

- What about other observables: scattering amplitudes, form factors, …  
only accessible in Minkowski space! 

All these reasons motivated a series of works for obtaining the Minkowski BS solutions

I   Compute scattering observable
II   Compute form factors

We developed two totally independent methods

- Light-Front projection of the BS equation and Nakanishi representation of the amplitude

- A « direct » approach (*)

(*) J.Carbonell and V.A. Karmanov Phys. Lett. B  727, 319 (2013), Phys. Rev. D  90, 056002 (2014) 



Minkowski space solutions : direct method 

(*) J. Carbonell and V.A. Karmanov Phys. Lett. B  727, 319 (2013), Phys. Rev. D  90, 056002 (2014) 

In Minkowski space, this equation is plagued with singularities from 4 different sources :

1. The singular inhomogeneous Born term

2.   The 2+2 poles of the constituent propagators

2. The kernel singularities

4. The singular behaviour of F itself (due to K, but not only)

A careful analysis of all these singularities allows (*) to obtain the full BS (off-mass shell) 
scattering amplitude, even above the inelastic thresholds (N1+N2 → N1+N2+m+..).
For the first time since its formulation …in 54 !

3 BS Direct

1

p′0 − a − iϵ
= PV

{

1

p′0 − a

}

+ iπδ(p′0 − a)

4

In terms of “Vertex function”

Scattering length from the Bethe-Salpeter equation in Euclidean space

J. Carbonell1 and V.A. Karmanov2

1Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex, France
2Lebedev Physical Institute, Leninsky Prospekt 53, 119991 Moscow, Russia

We show that the Bethe-Salpeter equation for the scattering amplitude in the limit of zero incident
energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The
decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering
observables and allows determining the scattering length from the Euclidean BS amplitude. Such a
possibility strongly simplifies the numerical solution of the BS equation and suggests a new way to
compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism.

PACS numbers: 11.10.St, 03.65.Nk, 12.38.Gc

I. INTRODUCTION

Bethe-Salpeter (BS) equation [1] is an efficient tool for study the relativistic systems in the explicitly covariant
framework. One of the important properties of this formalism is that the formal object it deals with – the BS
amplitude – has a Quantum Field Theoretical definition as a vacuum expectation value of the T-ordered product
of Heisenberg field operators [2]. For instance, the two-body BS amplitude in a scalar theory φ reads

Φ(x1, x2; p) = ⟨0 | T {φ(x1)φ(x2)} | p⟩ (1)

where | p⟩ is the state state vector with total momentum p = k1 + k2. The BS amplitude Φ obeys an integral
equation which uses to be written in momentum space. For that purpose, one first remark that translational
invariance imposes Φ to have the form

Φ(x1, x2; p) =
1

(2π)3/2
Φ(x, p) e−ip·(x1+x2)/2,

with x = x1 − x2 and where Φ(x, p) is called the reduced amplitude. Its Fourier transform Φ(k, p) defines the
momentum space BS amplitude usually computed:

Φ(x, p) =

∫

d4x Φ(k, p) e−ik·x,

The amplitude Φ(k, p) is related to the two-body scattering amplitude of the process k1s + k2s → k1 + k2 as
follows

F (k, p) =
Φ(k, p)

S1(k, p)S2(k, p)

where 2k = k1 − k2 and Si are the free one-body propagators. Written in terms of F , the inhomogeneous BS
equation for two spinless particles in Minkowski space reads:

F (k; p) = K(k, ks) − i

∫

d4k′

(2π)4
K(k, k′)F (k′; p)

[

(p
2 + k′

)2 − m2 + iϵ
] [

( p
2 − k′

)2 − m2 + iϵ
] (2)

where the interaction kernel K is given by a set of the irreducible Feynman graphs. The different steps of this
derivation are detailed in [3, 4].

For the bound state case, the inhomogeneous term drops out and the p-dependence of the off-mass shell
amplitude F (k; p) in the center of mass (c.m.) frame appears only via p2 = M2 where M is the total mass of
the system. The notation F (k0, k⃗) is then currently used.

and for the scattering process k1s + k2s -> k1 + k2 the BS equation reads

(2)

1 Generalites

F (k, p) =
Φ(k, p)

S1(k, p)S2(k, p)

F (k; p) =

∫

d4k′

(2π)4
iK(k, k′)F (k′; p)

[

(

p
2 + k′

)2
−m2 + iϵ

] [

(

p
2 − k′

)2
−m2 + iϵ

] (1)

F (k; ks) = K(k, ks)− i

∫

d4k′

(2π)4
K(k, k′)F (k′; ks)

[

(

p
2 + k′

)2
−m2 + iϵ

] [

(

p
2 − k′

)2
−m2 + iϵ

] (2)

F (k; p) = K(k, ks)− i

∫

d4k′

(2π)4
K(k, k′)F (k′; p)

[

(

p
2 + k′

)2
−m2 + iϵ

] [

(

p
2 − k′

)2
−m2 + iϵ

] (3)

k2 = k2
0 − k⃗2 = −(k2

4 + k⃗
2
) ≡ −k2

E

Q2 = Q2
0 − q⃗2 = −(Q2

4 + q⃗2) ≡ −Q2
E

e+ + e− −→ γ + γ

p+ p −→ p+ p+ (p+ p̄) + (n + n̄) −→ X + d+ d̄ !!!

|< P >| ∼ e−βFq

2



Minkowski espace solutions : direct method 

In this form all the PV coming from propagator poles have been absorved (by sustraction)
It remains « only » to treat the singularities of the kernel W0

S, of the Born term FB … and solve it !

Quite a nasty equation for an S-wave… compared to the NR Lipmann-Schwinger one
« c’est la vie » in Minkowski space !

F0(k0, k) = F B
0 (k0, k)

+
iπ2ks

8εks

W S
0 (k0, k, 0, ks)F0(0, ks)

+
π

2M

∫ ∞

0

dk′

εk′(2εk′ − M)

[

k′2W S
0 (k0, k, a−, k′)F0(|a−|, k′) −

2ks
2εk′

εk′ + εks

W S
0 (k0, k, 0, ks)F0(0, ks)

]

−
π

2M

∫ ∞

0

k′2dk′

εk′(2εk′ + M)
W S

0 (k0, k, a+, k′)F0(a+, k′)

+
i

2M

∫ ∞

0

k′2dk′

εk′

∫ ∞

0

dk′
0

[

W S
0 (k0, k, k′

0, k
′)F0(k′

0, k
′) − W S

0 (k0, k, a−, k′)F0(|a−|, k′)

k′2
0 − a2

−

]

−
i

2M

∫ ∞

0

k′2dk′

εk′

∫ ∞

0

dk′
0

[

W S
0 (k0, k, k′

0, k
′)F0(k′

0, k
′) − W S

0 (k0, k, a+, k′)F0(a+, k′)

k′2
0 − a2

+

]

F = F B +

∫

V F

We introduce a prefactor term ξ setting
F = F Bf

f = 1 +
1

F B

∫

V FB f

FE(k4, k) = I1 [FE(k′
4, k

′), FM(ϵks
− ϵk′ , k′)]

FM(ϵks
− ϵk, k) = I2 [FE(k′

4, k
′), FM(ϵks

− ϵk′ , k′)] (8)

FM(ϵks
− ϵk′, k′)

5

To this aim we will first consider the singularities of the four-dimensional equation (2), find
an appropriate integration contour ensuring the Wick rotation for non-zero ks and finally take
the limit ks → 0.

In this study we will consider the one-boson exchange kernel:

K(k, k′) = −
16πm2α

(k − k′)2 − µ2 + iϵ
, (3)

with α = g2/(16πm2) is the dimensionless coupling constant.
Calculations are performed in the c.m. frame, defined by p⃗ = 0. In this reference system

one has, by definition of the incident momentum ks, p0 = 2εks
= 2

√

m2 + k2
s . The on-shell

conditions k2
1 = k2

2 = m2, in terms of variables k0, k, are reduced to k0 = 0, k = ks.
The pole singularities associated with the propagators in (2) are given by

k′(1)
0 (k, ks) = εks

+ εk′ − iϵ = +a+ − iϵ

k′(2)
0 (k, ks) = εks

− εk′ + iϵ = −a− + iϵ

k′(3)
0 (k, ks) = −εks

+ εk′ − iϵ = +a− − iϵ

k′(4)
0 (k, ks) = −εks

− εk′ + iϵ = −a+ + iϵ (4)

with
a±(k′, ks) = εk′ ± εks

(5)

In the case k′ < ks, their positions in the complex plane k0 are shown in Fig. 1. When the
integration contour is rotated, the singularities k′(2)

0 and k′(3)
0 are crossed and the corresponding

residues of the integrand at these poles should be taken into account.

+
k

k =ik0 4

0

F (k  ,k)E 4

k’ 0
(4)

k’ (3)
0

k’ 

k’ 

(2)

(1)

0

0

+
+

+
F  (k  ,k)M 0

Figure 1: Singularities of the propagators for scattering state and the integration contour after rotation in the
complex plane k0, if k′ < ks.
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After many steps (*) the S-wave BS equation in Minwoski space takes the form 

(*) J.C. and V.A. Kamanov, Phys Rev D90 (2014) 056002 



2

and

η =
(p0 − p′0)

2 − p2 − p′2 − µ2

2pp′

The on-shell amplitude F on
l = Fl(p0 = 0, p = ps; ps)

determines the phase shift according to:

δl =
1

2i
log
(

1 +
2ips
εps

F on
l

)

(5)

The knowledge of this function in the entire domain
of its arguments – i.e. the off-shell amplitude – is
mandatory for some interesting physical applications,
like for instance computing the transition e.m. form
factor γ∗d → np or solving the BS-Faddeev equations.
This quantity has not been obtained until now.
The numerical solution of the BS equation in

Minkowski space is complicated by the existence of
singularities in the amplitude as well as in the inte-
grand of (1). These singularities are integrable in the
mathematical sense, due to iϵ in the denominators of
propagators, but their integration is a quite delicate
task and requires the use of appropriate analytical as
well as numerical methods.
To avoid these singularities, the BS equation was

first solved in Euclidean space. These solutions pro-
vided on-shell quantities like binding energies and
phase shifts [3]. However we have shown [4] that the
Euclidean BS amplitude cannot be used to calculate
electromagnetic form factors, since the corresponding
integral does not allow the Wick rotation. One there-
fore needs the BS amplitude in Minkowski space.
This amplitude has been computed for a separable

kernel (see [5] and references therein). For a field-
theory kernel – the ladder and the cross ladder – it
has been first obtained in our preceding works [6, 7]
for the bound state problem. To this aim, we devel-
oped a method based on the Nakanishi integral repre-
sentation of the BS amplitude. A similar method for
the scattering states has been proposed in [8] although
the numerical solutions are not yet available.
We present in this paper a new method providing

a direct solution of the original BS equation. It is
based on a scrutinized treatment of the singularities
and allows us to compute the corresponding off-shell
scattering amplitude in Minkowski space.

II. METHOD

There are four sources of singularities in the r.h.-
side of the BS equation (1) which are detailed below.

(i) The constituent propagators have two poles,
each of them represented as:

1

p′
0
− a− iϵ

= PV
1

p′
0
− a

+ iπδ(p′0 − a)

where PV means the principal value. In the prod-
uct of four pole terms, the only non vanishing contri-
butions come from the product of four PVs without
delta-functions, from the terms with three PVs and
one delta-function and from the term with two PVs
and two delta’s. After partial wave decomposition the
4D integral BS equation is reduced to a 2D one. Inte-
grating over p′0, we obtain in addition to the 2D part,
a 1D integral over p′ and a non integrated term. The
singularities due to the PVs are eliminated by sub-
tractions according to the identity:

PV

∫

∞

0

f(p′0)dp
′

0

p′
0

2 − a2
=

∫

∞

0

(

f(p′0)

p′
0

2 − a2
−

f(a)

p′
0

2 − a2

)

dp′0

The integrand in r.h.-side is not singular.
(ii) The propagator of the exchanged particle has

the pole singularities which, after partial wave decom-
position, turn into logarithmic ones. Their positions
are found analytically and the numerical integration
over p′0 variable is split into intervals between two con-
secutive singularities, namely:

∫

∞

0

[. . .] dp′0 =

∫ sing1

0

[. . .] dp′0 +

∫ sing2

sing1

[. . .] dp′0 + . . .

Each of these integrals is made regular with an ap-
propriate change of variable. We proceed in a similar
way for the p′ integration.
(iii) The inhomogeneous (Born) term is given by

the ladder kernel and is also singular in both vari-
ables. The positions of these singularities are analyt-
ically known.
(iv) The amplitude F itself has many singularities,

among which the Born term contains the strongest
ones. This makes difficult its representation on a basis
of regular functions as well as its numerical integra-
tion. To circumvent this difficulties we made the re-
placement F = V f , where f is a smooth function. Af-
ter that, the singularities of the inhomogeneous term
are canceled. We obtain in this way a non-singular
equation for f which we solved by standard methods.
Then we restore the BS off-mass shell amplitude F in
Minkowski space.

This is however the only way to compute in the whole kinematical domain:
- the off-mass shell F(k,ks;p) 
- the half off-mass shell F(k,ks)   (with p related to ks) 
and solve the BS scattering problem in its full complexity (including inelastic thresholds) 

The observables are obtained from the on-shell value Fon
0(k0=0,k=ks)    

e.g. the phase shifts 



Phase shifts and inelasticities

4

FIG. 2: Top: phase shift for α = 1.2 and µ = 0.50 calcu-
lated via BS equation (solid curve) are compared to the
non-relativistic results (dashed curve). Bottom: imagi-
nary part of the phase shift; dashed curve – modulas of
the two-body S-matrix

the phase shift which automatically appears when the
incident momentum exceeds the threshold value for
creation of the exchange meson. For m = 1, µ = 0.5

this value p(1)
s = 0.75. Simultaneously, the modulas

of two-body S-matrix differs from 1. For p(2)
s = 1.118

the second threshold, for creation of two mesons, is
open. As mentioned, it also contributes in this curve,

as well as the third threshold after p(3)
s = 1.435. Cor-

responding numerical values of this BS phase shift are
given in the table I.

We display in Fig. 3 the real (top panel) and imag-
inary (bottom panel) parts of the off-shell scattering

amplitude F0(p0, p; ps) as a function of p0 and p calcu-
lated for α = 0.5 and ps = µ = 0.5. Its real part shows
a non trivial structure with a ridge and a gap result-
ing from the singularities of the inhomogeneous term.
Its on-shell value F on

0 = F0(0, ps; ps) = 0.753+ i0.292,
determining by eq. (3) the phase shift δ = 21.2 deg.,

FIG. 3: Top: real part of the off-shell amplitude
F (p0, p; ps) for α = 0.5, ps = 0.5, µ = 0.5. Bottom: imag-
inary part of F (p0, p; ps).

corresponds to a single point on theses two surfaces.
Our calculation, shown in Fig. 3, provides the full
amplitude F0(p0, p; ps) in a two-dimensional domain.

In summary we solved the BS equation for the scat-
tering states in Minkowski space for the ladder ker-
nel. The off-mass-shell amplitude is found . Com-
ing on mass shell, we obtain the elastic and inelastic
phase shifts. They considerably differ, even at low en-
ergy, from the non-relativisttic ones. Above the me-
son creation threshold the inelasticity appears which
is also calculated. The BS off-mass-shell amplitude in
Minkowski space is found for the first time It can be
used to calculate the transition form factor and as an
input in the three-body BS-Faddeev equations.

[1] E.E. Salpeter, H. Bethe, Phys. Rev. 84, 1232 (1951).
[2] M.J. Levine, J.A. Tjon, J. Wright, Phys. Rev. Lett.

16, 962 (1966); M.J. Levine, J. Wright, J.A. Tjon,
Phys. Rev. 154, 1433 (1967).
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III. NUMERICAL RESULTS

We first applied this method to solve the bound
state problem by dropping the inhomogeneous term
in (1). The binding energies coincide, within four-
digit accuracy, with the ones calculated in our previ-
ous work [6] and with the Euclidean space results.

The S-wave off-shell scattering amplitude F0 was
calculated and the phase shifts extracted by means
of eq. (5). They include an imaginary part, which
has been also found, above the first inelastic threshold
p∗s(µ) =

√

mµ+ µ2/4. By performing aWick rotation
in (1) we derive an Euclidean space equation similar
to one obtained in [3]. The phase shifts found by these
two methods coincide with each other within 3-4 dig-
its. Furthermore, the imaginary part of the phase
shifts vanishes with high accuracy below threshold.
The unitarity condition is not automatically fulfilled
in our approach, but appears as a consequence of han-
dling the correct solution. It thus provides a stringent
test of the numerical method. Our results reproduce
the phase shifts given in [3] within the accuracy al-
lowed by extracting numerical values from published
figures.
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FIG. 1: Top: phase shift calculated via BS equation (solid
curve) are compared to the non-relativistic results (dashed
curve) for µ = 0.5. Bottom: the same as on top but for
α = 1.2

Figure 1, top panel, shows the phase shifts cal-
culated via BS equation (solid curve) and via the
Schrödinger one with the Yukawa potential (dashed
curve) for the constituent mass m = 1, exchange mass
µ = 0.5 and coupling constant α = g2/(16πm2) = 0.5.
Bottom panel shows the same but for α = 1.2. For
this value of α there exists the bound state. There-
fore, according to the Levinson theorem, the phase
shift starts with value 180 degrees. One can see that
the difference between relativistic and non-relativistic
results is considerable even for small incident momen-
tum. It increases with increase of α.
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α
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Scattering length 
m=1 µ=0.50

FIG. 2: Top: solid curve – imaginary part of the phase
shift; dashed curve – modulas of the two-body S-matrix.
Bottom: solid curve – scattering length vs. coupling con-
stant α for µ = 0.5 calculated via BS equation; dashed
curve – the same calculated via Schrödinger equation.

Fig. 2 (top) shows the imaginary part of the phase
shift (for α = 1.2) which automatically appears when
the incident momentum exceeds the threshold value
for creation of the exchange meson. For m = 1,
µ = 0.5 this value pthresh = 0.75. Simultaneously,
the modulas of two-body S-matrix differs from 1. For
ps = 1.118 the second threshold, for creation of two
mesons, is open. It also contributes in this curve.
Fig. 2 (bottom) shows the scattering length a0 as a

function of the coupling constant α. In the vicinity of

Author's personal copy
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Fig. 3. Real (left panel) and imaginary (right panel) phase shift (degrees) for α = 1.2 and µ = 0.50 calculated via BS equation (solid) compared to the non-relativistic results
(dashed).

Table 2
Real and imaginary parts of the phase shift (degrees) calculated by BS Eq. (1) vs. incident momentum ps for α = 1.2 and µ = 0.5. Corresponding first inelastic threshold is
p(1)

s = 0.75.

ps 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.3 1.5

Re[δ] 124 99.9 77.8 65.1 56.2 49.3 43.9 39.4 35.7 32.5 29.7 22.8 19.3
Im[δ] 0 0 0 0 0 0 0 0 0.033 0.221 0.453 0.848 0.852

Fig. 4. Real (left panel) and imaginary (right panel) parts of the off-shell amplitude F (p0, p; ps) for α = 0.5, ps = µ = 0.5.

shift δ = 21.2◦ , corresponds to a single point on theses two surfaces. Our calculation, shown in Fig. 4, provides the full amplitude F0(p0, p)
in a two-dimensional domain.

Computing this quantity, and related on-shell observables, is the main result of this work. Together with the bound state solution in
Minkowski space [3], they pave the way for a consistent relativistic description of composite systems in the framework of BS equation.

4. Conclusion

We have presented the first results of the BS off-shell scattering amplitude in Minkowski space. The different kinds of singularities
of the original BS equation are properly treated. A regular equation is obtained and solved by standard methods. The results presented
here were limited to S-wave in the spinless case and the ladder kernel but they can be extended to any partial wave. Coming on mass
shell, the elastic phase shifts where accurately computed. They considerably differ, even at zero energy, from the non-relativistic ones.
Above the meson creation threshold, an imaginary part of the phase shift appears and has also been calculated. The off-shell BS scattering
amplitude thus obtained can be further used to calculate the transition form factor. In its full off-shell form, it can be used as input in the
three-body BS–Faddeev equations.
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The problem with the Euclidean espace solutions 
Assume we want to obtain a scattering BS equation for the euclidean amplitude FE(k4,k)=FM(k0=ik4,k)
by properly applying the Wick rotation, i.e. taking into account the singularities

3

II. DERIVING EUCLIDEAN EQUATION

We will derive in this section the integral equation satisfied by the off-shell Euclidean amplitude FE(k4, k),
corresponding to the zero incident momentum ks = 0.

One possible way to proceed would be to consider the coupled Euclidean-Minkowski system of equation
derived in Ref. [13] (appendix C) and study their limit when ks → 0. However we prefer to present here an
independent and self consistent derivation of this equation.

To this aim we will first consider the singularities of the four-dimensional equation (2), find an appropriate
integration contour ensuring the Wick rotation for non-zero ks and finally take the limit ks → 0.

In this study we will consider the one-boson exchange kernel:

K(k, k′; p) = −
16πm2α

(k − k′)2 − µ2 + iϵ
, (3)

with α = g2/(16πm2) is the dimensionless coupling constant.
Calculations are performed in the c.m. frame, defined by p⃗ = 0. In this reference system one has, by

definition of the incident momentum ks, p0 = 2εks
= 2

√

m2 + k2
s . The on-shell conditions k2

1 = k2
2 = m2, in

terms of variables k0, k, are reduced to k0 = 0, k = ks.
The pole singularities associated with the propagators in (2) are given by

k′(1)
0 (k, ks) = εks

+ εk′ − iϵ = +a+ − iϵ

k′(2)
0 (k, ks) = εks

− εk′ + iϵ = −a− + iϵ

k′(3)
0 (k, ks) = −εks

+ εk′ − iϵ = +a− − iϵ

k′(4)
0 (k, ks) = −εks

− εk′ + iϵ = −a+ + iϵ (4)

with

a±(k′, ks) = εk′ ± εks
(5)

In the case k′ < ks, their positions in the complex plane k0 are shown in Fig. 1. When the integration contour

is rotated, the singularities k′(2)
0 and k′(3)

0 are crossed and the corresponding residues of the integrand at these
poles should be taken into account.
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FIG. 1: Singularities of the propagators for scattering state and the integration contour after rotation in the complex
plane k0, if k′ < ks.
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The initial  BS equation (2) becomes

4

Equation (2) is then transformed into:

FE(k4, k⃗; k⃗s) = V B(k4, k⃗; k⃗s) +

∫

d4k′

(2π)4
V (k4, k⃗′; k′

4, k⃗′)FE(k′
4, k⃗′; k⃗s)

(k′
4
2 + a2

−)(k′
4
2 + a2

+)
+ S(k4, k, ks) (6)

where the Wick-rotated interaction kernel (3) reads

V (k4, k⃗; k′
4, k⃗′) =

16πm2α

(k4 − k′
4)

2 + (k⃗ − k⃗′)2 + µ2
, (7)

and the Born term is given by

V B(k4, k⃗; k⃗s) = V (k4, k⃗; k′
4 = 0, k⃗′ = k⃗s) (8)

The remaining term S(k4, k, ks) denotes the contribution of the two poles k′(2)
0 and k′(3)

0 shown in Fig. 1.
The residual contribution – existing only if k′ < ks – is the sum of two terms S = S1 + S2: S1 is the residue

at the pole k′(2)
0 = −a− + iϵ and S2 the one from k′(3)

0 = +a− − iϵ (multiplied by 2iπ).
The first term S1 is given by:

S1(k0) =
πg2

4(2π)4

Z

k′<ks

d3k′ F̃M (k′, z′)

εks
εk′ [−a− + iϵ]

»

−a− +
q

(k⃗′
− k⃗)2 + µ2

− k0

– »

−a− −

q

(k⃗′
− k⃗)2 + µ2

− k0 + iϵ

– (9)

where F̃M (k′, z′) is the particular value of the Minkowski amplitude

F̃M (k′, z′) = F (k′
0 = εks

− εk′ , k′)

and d3k′ = k′2dk′dφdz′.
S2 is given by a simple substitution S2(k0) = S1(−k0). Notice that the sum S1 + S2 is symmetric relative to

k0 → −k0, as it should be.
Setting k0 = ik4 we finally obtain for S = S1 + S2:

S =
g2π

(2π)4

Z

k′<ks

d3k′ F̃M (k′, z′)

2εk′εks
(a− − iϵ)

h

k2
4 −

“

a− −

q

(k⃗′
− k⃗)2 + µ2

”“

a− +
q

(k⃗′
− k⃗)2 + µ2

”i

h

k2
4

+
“

a− −

q

(k⃗′
− k⃗)2 + µ2

”2ih

k2
4

+
“

a− +
q

(k⃗′
− k⃗)2 + µ2

”2i

(10)

This expression, as well as Eq. (6) contains integrable singularities which make difficult the numerical solution.
However, it is worth noticing that this problem disappears in the limit ks = 0. Indeed, the integrand in (10)
contains the singular factor

1

a− − iϵ
=

1

εk′ − εks
− iϵ

= PV
1

εk′ − εks

+ iπδ(εk′ − εks
) = PV

εk′ + εks

k′2 − ks
2 + iπδ(εk′ − εks

)

In the limit ks → 0 the singularity of the principal value is cancelled by the factor k′2 from the integration
volume and in the shrinking limits 0 < k′ < ks the integral (10) tends to zero. Therefore the contributions of
two singularities shown in Fig. 1 disappear: S → 0 when ks → 0.

The last term S in Eq. (6) can be omitted and the four-dimensional BS equation for the Euclidean amplitude
in the zero energy limit takes the form

FE(k4, k⃗; 0) = V B(k4, k⃗; 0) +

∫

d4k′

(2π)4
V (k4, k⃗′; k′

4, k⃗′)

(k′
4
2 + a2

−)(k′
4
2 + a2

+)
FE(k′

4, k⃗′; 0) (11)
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with « rotated » kernels 

Pole contribution results into a term (S) mixing FE and FM : equation for FE alone is impossible !!!

To this aim we will first consider the singularities of the four-dimensional equation (2), find
an appropriate integration contour ensuring the Wick rotation for non-zero ks and finally take
the limit ks → 0.

In this study we will consider the one-boson exchange kernel:

K(k, k′) = −
16πm2α

(k − k′)2 − µ2 + iϵ
, (3)

with α = g2/(16πm2) is the dimensionless coupling constant.
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Figure 1: Singularities of the propagators for scattering state and the integration contour after rotation in the
complex plane k0, if k′ < ks.
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(E1) 



The (integral) term S contains the Minkoswki amplitude at the particular value

In addition to (E1), a second integral equation is needed to solve the problem !
One ends with a system of two-coupled equations involving both FE and FM denoted symbolically 

We introduce a prefactor term ξ setting
F = F Bf

f = 1 +
1

F B

∫

V FB f

FE(k4, k) = I1 [FE(k′
4, k

′), FM(ϵks
− ϵk′ , k′)]

FM(ϵks
− ϵk, k) = I2 [FE(k′

4, k
′), FM(ϵks

− ϵk′ , k′)] (8)

5

This system of equations was first obtained in M. Levin, J. Wright, and J. Tjon, Phys Rev 254 (1967) 1433  
It was derived independently in J.C. and V.A. Kamanov, Phys Rev D90 (2014) 056002 
where it was used to check the « direct » solution FM (for the particular value of k0)

R1: Equations (E1+E2) remain singular (in the Minkowski part)

R2: They do not provide the amplitude FM in the full (k0,k) plane but in one-dimensional manifold (string)

R3: On-mass shell, i.e. k0=0, one has FM(0,ks) =FE(0,ks) and the solution provides elastic phase shifts

The system of equations (E1+E2) coupling FE and FM  shows the impossibility to solve the BS 
scattering problem using an eucliden metric

(E1) 

(E2) 

F0(k0, k) = FB
0 (k0, k)

+
iπ2ks
8εks

W S
0 (k0, k, 0, ks)F0(0, ks)

+
π

2M

∫ ∞

0

dk′

εk′(2εk′ −M)

[

k′2W S
0 (k0, k, a−, k

′)F0(|a−|, k′)−
2ks

2εk′

εk′ + εks
W S

0 (k0, k, 0, ks)F0(0, ks)

]

−
π

2M

∫ ∞

0

k′2dk′

εk′(2εk′ +M)
W S

0 (k0, k, a+, k
′)F0(a+, k

′)

+
i

2M

∫ ∞

0

k′2dk′

εk′

∫ ∞

0

dk′
0

[

W S
0 (k0, k, k

′
0, k

′)F0(k′
0, k

′)−W S
0 (k0, k, a−, k

′)F0(|a−|, k′)

k′2
0 − a2−

]

−
i

2M

∫ ∞

0

k′2dk′

εk′

∫ ∞

0

dk′
0

[

W S
0 (k0, k, k

′
0, k

′)F0(k′
0, k

′)−W S
0 (k0, k, a+, k

′)F0(a+, k′)

k′2
0 − a2+

]

F = FB +

∫

V F

We introduce a prefactor term ξ setting
F = FBf

f = 1 +
1

FB

∫

V FB f

FE(k4, k) = I1 [FE(k
′
4, k

′), FM(ϵks − ϵk′ , k
′)]

FM(ϵks − ϵk, k) = I2 [FE(k
′
4, k

′), FM(ϵks − ϵk′ , k
′)] (9)

FM(ϵks − ϵk′, k
′)

FM(k0 = ϵks
− ϵk,k)

5

…..Always ???



The case of zero energy scattering (ks=0)
It can be shown(*) that the additional term S coupling to the Minkowski vanishes in the limit ks=0

One obtain this way a regular purely Euclidean equation for FE. For S-waves it reads

(*) J.C. and V.A. Kamanov, Phys. Lett. B754 (2016) 270

The scattering length is directly given by  a0=-FE(0,0)/m

Apart from providing a very stable and cheap scattering length  in BS equation (like bound states)
it demonstrates, in the BS framework, the possibility to obtain (till now zero energy!) scattering 
results from purey Euclidean solutions

This suggests an alternative way to Luscher method for computing scattering observables in 
Lattice calculations : one needs only (the Fourier transform of) the Euclidean version of

2 BS

Γ(k, P ) =

∫

d4k′

(2π)4
iK(k, k′; P ) S1(p

′
1) S2(p

′
2) Γ(k′, P ) (1)

ΦE(k4, k⃗) ≡ ΦM (k0 = ik4, k⃗)

ΦM(k0, k⃗) ≡ ΦE(k4 = −ik0, k⃗)

(p2
1,E + m2)(p2

2,E + m2)ΦE(p4, p⃗) = g2

∫

dk4dk⃗

(2π)4

1

(p − k)2
E + µ2

ΦE(k4, k⃗)

(p0, p ≡| p⃗ |)

Φ(x1, x2, P ) =< 0 | T{φ(x1)φ(x2)} | P > (2)

often expressed in terms of his Fourier transfom

Φ(x1, x2, P ) =

∫

dp1

(2π)4

dp2

(2π)4
Φ(p1, p2) e−iPx e−ikx

= e−iPx

∫

dk

(2π)4
Φ(k, P ) e−ikx (3)

where P = p1 + p2 2k = p1 − p2

3 BSMINK

∫

dβ Φ(k + βω, p) =

∫

dβ G(12)
0 (k + βω, p)

∫

d4k′

(2π)4
iK(k + βω, k′, p) Φ(k′, p) (4)

V (γ, z, γ′, z′) =

{

W (γ, z, γ′, z′) if −1 ≤ z′ ≤ z
W (γ,−z, γ′,−z′) if z ≤ z′ ≤ 1

(5)

avec

W (γ, z, γ′, z′) =
αm2

2π

(1 − z)2

γ + m2z2 + κ2(1 − z2)

∫ 1

0

v2

D2(v)
dv (6)

et

D(γ, z, γ′, z′, v) = v(1 − v)(1 − z′)γ + (1 − z)[(1 − v)µ2 + vγ′]
+ vm2 [(1 − v)(1 − z′)z2 + vz′2(1 − z) ]
+ vκ2(1 − z)(1 − z′) [1 + z − v(z − z′) ]

Nakanishi integral representation [?, ?]:

2

This quantity has been computed since many years in LQCD collaborations (see Ikeda san talk))
but never used to compute a0
Could you please try ???

1 Bethe-Salpeter

FE(k4, k) = V B(k4, k) +

∫ ∞

0

k′2dk′

∫ ∞

0

dk′
4

V0(k4, k; k′
4, k

′)

(k′
4
2 + a′−

2)(k′
4
2 + a′+

2)
FE(k

′
4, k

′), (1)

F̃M (k′, z′) = F (k′
0 = εks − εk′, k

′)

S =
g2π

(2π)4

∫

k′<ks

d3k′
FM (εks − εk′ , k

′)

2εk′εks(a− − iϵ)

[

k24 −
(

a− −
√

(k⃗′ − k⃗)2 + µ2
)(

a− +
√

(k⃗′ − k⃗)2 + µ2
)]

[

k24 +
(

a− −
√

(k⃗′ − k⃗)2 + µ2
)2][

k24 +
(

a− +
√

(k⃗′ − k⃗)2 + µ2
)2]

(2)

F (k, p) =
Φ(k, p)

S1(k, p)S2(k, p)

F (k; p) =

∫

d4k′

(2π)4
iK(k, k′)F (k′; p)

[

(

p
2 + k′

)2
−m2 + iϵ

] [

(

p
2 − k′

)2
−m2 + iϵ

] (3)

F (k; ks) = K(k, ks)− i

∫

d4k′

(2π)4
K(k, k′)F (k′; ks)

[

(

p
2 + k′

)2
−m2 + iϵ

] [

(

p
2 − k′

)2
−m2 + iϵ

] (4)

F (k; p) = K(k, ks)− i

∫

d4k′

(2π)4
K(k, k′)F (k′; p)

[

(

p
2 + k′

)2
−m2 + iϵ

] [

(

p
2 − k′

)2
−m2 + iϵ

] (5)

k2 = k2
0 − k⃗2 = −(k2

4 + k⃗
2
) ≡ −k2

E

Q2 = Q2
0 − q⃗2 = −(Q2

4 + q⃗2) ≡ −Q2
E

e+ + e− −→ γ + γ

p+ p −→ p+ p+ (p+ p̄) + (n + n̄) −→ X + d+ d̄ !!!

|< P >| ∼ e−βFq

2



3. Numerical results

The numerical solutions of Eq. (16) with the kernel (15) have been obtained by spline
expansion of the Euclidean amplitude F0(k4, k) and solving the corresponding linear system
(see Appendix A of Ref. [13] for details).

The scattering lengths a0 are extracted by computing the value at the origin of the Euclidean
amplitude (17). Their values are in full agreement with the results of our previous work [16]
and from those of Ref. [15], both obtained using different and independent methods. Some
deviations in the case µ = 0.15, noticed in Table 1 of [15], were due to inaccuracies in [16] and
have been corrected in benefit of [15]. This lack of precision in the µ = 0.15 results of Ref. [16]
was due to an unadapted choice of the grid parameters for large values of the coupling constant
α. In view of the agreement with the preceding results (Tab. 1 of [16] and Tabs. 1-3 of [15]), it
would be redundant to repeat here the numerical values. However, we give below the Euclidean
off-shell amplitude F0(k4, k) determining by Eq. (17) the scattering length.

Figure 2 displays the amplitude F0(k4, k) as a function of k at fixed values of k4 (left panel)
and as a function of k4 at fixed values of k (right panel) for the parameters m = 1, µ = 0.50
and α = 0.50. The scattering length a0 = −3.66 is directly readable in both panels. For
these parameters the two-body system has no bound state and the amplitudes are monotonic
function in both arguments.

The same amplitude is shown in Figure 3 for µ = 0.15 and α = 2.50. For these parameter
values the two-body system has two bound states with the second one having very small binding
energy. This results in a large and positive value of the scattering length a0 = +12.3. The
amplitude has consequently a richer structure in both variables than in Fig. 2 and requires
hence a finer grid to be properly described.
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Figure 2: Euclidean scattering amplitude F0(k4, k) as a function of k for different values of k4 (left) and as
a function of k4 for different values of k (right). They correspond to m = 1, µ = 0.50 and α = 0.50. The
scattering length value is given by a0 = −F (0, 0) = −3.66.
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Figure 3: The same than in Fig. 2 with the parameters µ = 0.15 and α = 0.50. The scattering length value is
given by a0 = −F (0, 0) = +12.3

4. Conclusion

We have shown that in the limit of zero incident energy the Bethe-Salpeter scattering
amplitude can be obtained by solving a purely Euclidean equation, as it was the case for the
bound states.

The decoupling between Euclidean and Minkowski BS amplitudes is only possible for zero
energy scattering observables and allows determining the scattering length from the Euclidean
BS amplitude.

The results have been tested by solving the Euclidean Bethe-Salpeter scattering equation
in a scalar one-boson exchange model where the scattering lengths values were obtained by
independent methods.

Such a possibility suggests to extract the scattering length in Lattice calculations from a
direct computation of the Euclidean Bethe-Salpeter amplitude (1) in momentum space without
using the Luscher formalism.
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Conclusion

We have presented a method for solving Bethe-Salpeter equation in Minkowski space.
based on a direct solution with a careful analysis of singularities

We have shown that Minkowski solutions are mandatory for the scattering problem

We propose a new method to compute the scattering length (zero scattering
energy) from a purely Euclidean BS amplitude FE (vertex function)
It provides an alternative to Luscher method used in Lattice calculations 
and it is extensible to non zero energy in the effective range approximation.


