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Prelude

Despite that physical space-time has a Minkowski structure, the interest in formulating a relativistic
theory (QFT) in an Euclidean metric was already present in the very early days

It was first applied by G. Wick to solve the Bethe-Salpeter equation: “Wick rotation” ky=ik,
=k -k = —(k2+ k) = —k

G. Wick, Properties of the Bethe-Salpeter wave functions, Phys. Rev. 96 (1954) 1124

and formulated in a more general QFT framework soon later

J. Schwinger
On the Euclidean structure of relativistic field theory, Proc. Natl. Acad. Sci. U.S.A 44 (1958) 95
Euclidean Quantum Electrodynamics, Phys Rev (1959) 721

K. Symanzik
Euclidean Quantum Field Theory |. Equations for a scalar model, J. Math. Phys. 7 (1966) 510
Euclidean Quantum Field Theory in Local Quantum Field Theory, Ed. by R. Jost, Academic Press Ne York (1969)
International School of Physics Enrico Fermi, Course XLV, Ed. by R. Jost (1968)

This interest was enhanced by the success of Lattice calculations, where it is mandatory !

The main theoretical problem is to prove the equivalence between both formulations
K. Osterwalder and E. Schrader, Axioms for Euclidean QFT, Comm. Math. Phys. 42 (1975) 440

Gave conditions for a QFT to ensure that the “analytic continuation” of Green functions can
be safely done (no singularities) ...but they are not yet proved for theories of interest



Prelude

The practical benefit of Minkowski -> Euclidean is clear :
Everything becomes smooth (allowing standard methods for solving integral equations)
Euclidean actions Sg becomes positive definite (allowing path integrals)

Much less clear is what is lost when using an Euclidean formulation...

— 2

2 _ M2 2 _ 2 -2
| Form factors F(Q?2) in time-like region are not allowed QP =Q-¢=-(Qi+7)= E

It is even not clear that the space-like are correctly computed
Il Scattering is lost:
Maiani-Testa “no go theorem® PLB 245 (1990) 585: no scattering in infinite euclidean space

However circunvented in LQCD finite volume by “Luscher method”

lIl Problems for introducing chemical potential (at T>0)



Luscher method (87)

Energy levels g,(L) of 2-particle in a periodic box (L) provide phase-shifts

In the simplest case: ground state gy(L) provides the scattering length A,

0.4

More involved expressions provide the phase shifts k cot 50(k) =

eo(L) = ?232 {1+01 (%) + e (%>2+...}

c, and ¢, are universal known coefficients

|

mal

S(n)

It works well ! ...but has problems with open channels and for large lattices



Prelude

General results are sometimes too deep to be clear....
Bethe-Salpeter (BS) framework is an ideal landscape to have some light on this problem

I
Formulated in terms of BS amplitude which - contrary to wave functions — have a clear
definition in terms of QFT and is accessible to LQCD

Il
It fulfills a 4D integral equation which - in its (simplified) version — can be solved both in
Euclidean and Minkowski space

Aim of this talk :

I Present a method for obtaining BS scattering solutions in Minkowski space

Il Discuss the problem with Euclidean BS scattering solutions

Il Obtain a purely Euclidean equation for zero energy (scattering length)
Alternative to Luscher method in Lattice calculations

IV Present possible extension to non zero energies (Effective Range approximation)



Introduction

Bethe Salpeter equation deals with a - pre-existing - QF T object (Gell-Mann Low)

O(xq, 19, P) =< 0| T{o(x1)p(22)} | P >

Its Fourier transform ®(k,P)

dpl dp2 —iPx _—ikx —iPx dk —ikx
(I)(xlax%P) — / (27’(’)4 (27T)4(I)(p17p2) € € = € (27r>4(1)<kap) €
- : pr+p2 = P
satisfies a 4D equation. For bound state case: pL—py = 2%
d*k’
O(k, P) = $1(5, P)S2 (1 P) [ gyt (kKL P) B P) (1)
/s

P2=M2 with M the total mass of the two-body system

Si(k,P) = —
S, = free propagators (L +k)" —m?+ie

So(k,P) = :

1

(B — k)" — m?+ie
iK=Interaction kernel

- if K would contain all the IR graphs, solving (1) would be equivalent to solve the full QFT
- This is however a wishful thinking. In practice one uses a very poor restriction: ladder+simple kernels



®(k, p)

It is usually written in terms of the “vertex function” F(k,p) = S1(k, p)Sa(k, p)
1 ’ 2 Y

| W i (k,k')F (K p)
e £ v e | v s

As one can see the equation has singularities in the free propagators
As well as in the simplest (one boson exchange ladder) kernel

g2

K(k, k)= —
( ) ) (k_k/>2_lu2_|_z'€




Bound-state Solutions in Euclidean space

Bound states are easily solved with the “Wick rotation” ky=ik,
Minkowski (kg,k) — Euclidean (kg,k)
K =k2 B = -+ B = k2

It leads to a smooth integral equation for the euclidean amplitude $p(ky, k) = Ppp(kg = iky. k)

4 (2m)* (k= k)% + p?

M2 2 . I 310 1 -
(ki + Kk +m? — —) - M%ﬁ] O (ky, k) = ¢ / dhydk dp(ky, k)
soluble by standard methods.

Until very recently, most of the existing solutions were found in this way

Rm: Not a simple « variable change » but a straightforward application of Cauchy theorem: Kk, =ik,
ds — 1 If a continous deformation between two +R
f(z) Z = f(z) < paths do not cross a singularity of f(z)
g V2
ké4) kf)2)
Ex: free propagators A+ 4 B ‘
-R Y + + +R 0




There are however some problems:

- The validity of the Wick rotation requires a careful analysis of kernel singularities
It is done only in some cases (ladder WC)

- The total mass M is invariant but the BS amplitude is not: impossible to recover ®,, from ®¢
- What about other observables: scattering amplitudes, form factors, ...
only accessible in Minkowski space!
All these reasons motivated a series of works for obtaining the Minkowski BS solutions

| Compute scattering observable
Il Compute form factors

We developed two totally independent methods
- Light-Front projection of the BS equation and Nakanishi representation of the amplitude

- A « direct » approach (*)

(*) J.Carbonell and V.A. Karmanov Phys. Lett. B 727, 319 (2013), Phys. Rev. D 90, 056002 (2014)



Minkowski space solutions : direct method

O (k
In terms of “Vertex function” F(k,p) = Sk ;)épgk >
1 ’ 2 y

and for the scattering process ki + ko -> k; + K, the BS equation reads

A4k’ Kk, K)F (K k,)

F(k:ky) = K(k,ky) —i / (2)
) ) 4 . .

(27) {(g + k’)2 —m? 4+ ze} [(g - k’)2 —m? 4+ ze}
In Minkowski space, this equation is plagued with singularities from 4 different sources :
1. The singular inhomogeneous Born term
2. The 2+2 poles of the constituent propagators . .

%:PV{ p }+z’7r5(pg—a)

2. The kernel singularities Pp —a—1e Py —a

4. The singular behaviour of F itself (due to K, but not only)

A careful analysis of all these singularities allows (*) to obtain the full BS (off-mass shell)
scattering amplitude, even above the inelastic thresholds (N;+N, — N;+N,+m+..).
For the first time since its formulation ...in 54 !

(*) J. Carbonell and V.A. Karmanov Phys. Lett. B 727, 319 (2013), Phys. Rev. D 90, 056002 (2014)



Minkowski espace solutions : direct method

After many steps (*) the S-wave BS equation in Minwoski space takes the form

Folko, k) = FB(ko, k)

2
ks
+ W (ko, K, 0, kg) Fo (0, ky)
8€k
> d 2 Qk 2€k’
KW (ko, kya—, K ) Fo(la_|, k') — =W (ko, k., 0, k) Fo (0, ky
i 2M/0 5k’<25k’_M) [ WO( 0 ) O(’a ‘7 ) 5k1+€k8W0< 0, , 0, ) 0(07 )]
T [ KdK
- a7 W (ko, k,ar, k) Folay, K
ZM/ Ek! 2€k/+M> O( 0, Vs At ) O(a+7 )
KK (W (ko K, kg, k) Fo(kg, k) — WS(A;O,k,a_,k')Fo(\a_\,kf)
+ dky, —
2M 8k:’ k/
_ _/ K"k /O"dk, W (ko b, ki, K) Folkp, k) — Ws(ko,k,a+,k’)F0(a+,k’)
2M 0 | k,/(Q) _aa_

ai(k', ]fs) = &y’ + €k

In this form all the PV coming from propagator poles have been absorved (by sustraction)
It remains « only » to treat the singularities of the kernel W,S, of the Born term FB ... and solve it !

Quite a nasty equation for an S-wave... compared to the NR Lipmann-Schwinger one
« c’est la vie » in Minkowski space !

(*) J.C. and V.A. Kamanov, Phys Rev D90 (2014) 056002



This is however the only way to compute in the whole kinematical domain:

- the off-mass shell F(k,kg;p)

- the half off-mass shell F(k,k,) (with p related to k)

and solve the BS scattering problem in its full complexity (including inelastic thresholds)

The observables are obtained from the on-shell value Fo"y(k,=0,k=k,)

1 2ips .
e.g. the phase shifts o = - log(l + ;p B )
Ps



Phase shifts and inelasticities
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The problem with the Euclidean espace solutions

Assume we want to obtain a scattering BS equation for the euclidean amplitude Fg(k4,k)=Fy(ko=iks,k)
by properly applying the Wick rotation, i.e. taking into account the singularities

K \V(k, k) = en +ew —ie=+ay —ic g
k’(()z)(k, ks) = ek, —ep +ie=—a_ +ie
K (k) = —ep, +ew —ie= +a_ —ic
K (k k) = —en, —ew +ie= —ay + ie

ai(k", ks) = &g/ + €k,

The initial BS equation (2) becomes

- oL dAE L ]g/.k,/ k?; FE(L - —’S
FE(k4’k7k8):VB(k4,]€,kS)+/ 4V( 4, 27 45 ) 2( 4,k,]€)
@)t (k7 +a?) (k) + a?)

+ S(kq, k, ks) (E1)

16mm2a
(ks — Ky)? + (k — k)2 + p2

VB(k4, ];; /28) = V(ky, /2; ky =0, k= ES)

V(k47 E7 kil? k_;) =
with « rotated » kernels

Pole contribution results into a term (S) mixing Fg and Fy, : equation for Fg alone is impossible !!!



The (integral) term S contains the Minkoswki amplitude at the particular value  Fy;(ko = €, — i, k)

In addition to (E1), a second integral equation is needed to solve the problem !
One ends with a system of two-coupled equations involving both Fg and F,; denoted symbolically

Folknk) = T, [Fulky k), Falen, — e k)] (EN)
Fyen, —en k) = Iy [Fp(ky, k'), Fu(er, — epr, k)] (E2)

This system of equations was first obtained in M. Levin, J. Wright, and J. Tjon, Phys Rev 254 (1967) 1433

It was derived independently in J.C. and V.A. Kamanov, Phys Rev D90 (2014) 056002

where it was used to check the « direct » solution F, (for the particular value of k)

R1: Equations (E1+E2) remain singular (in the Minkowski part)

R2: They do not provide the amplitude F,,in the full (ky,k) plane but in one-dimensional manifold (string)

R3: On-mass shell, i.e. ky=0, one has F,(0,k;) =Fg(0,k;) and the solution provides elastic phase shifts

The system of equations (E1+E2) coupling Fg and F,; shows the impossibility to solve the BS
scattering problem using an eucliden metric

.....Always ???



The case of zero energy scattering (k.=0)

It can be shown(’) that the additional term S coupling to the Minkowski vanishes in the limit k=0

One obtain this way a regular purely Euclidean equation for Fg. For S-waves it reads

o0 o0 %(k4 kk/ k/)
Frlky, k) = VB(ky, k +/ k’Qdk’/ Ak’ AR Fr(kl K
5k, k) (Ka, k) O s T D ) B(ky, k)

The scattering length is directly given by a,=-Fg(0,0)/m

Apart from providing a very stable and cheap scattering length in BS equation (like bound states)
it demonstrates, in the BS framework, the possibility to obtain (till now zero energy!) scattering
results from purey Euclidean solutions

This suggests an alternative way to Luscher method for computing scattering observables in
Lattice calculations : one needs only (the Fourier transform of) the Euclidean version of

O(xy, 20, P) =< 0| T{Pp(x1)p(x2)} | P >

This quantity has been computed since many years in LQCD collaborations (see lkeda san talk))
but never used to compute a,

Could you please try ?7?7?

(*) J.C. and V.A. Kamanov, Phys. Lett. B754 (2016) 270
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Conclusion

We have presented a method for solving Bethe-Salpeter equation in Minkowski space.
based on a direct solution with a careful analysis of singularities

We have shown that Minkowski solutions are mandatory for the scattering problem

We propose a new method to compute the scattering length (zero scattering
energy) from a purely Euclidean BS amplitude Fg (vertex function)

It provides an alternative to Luscher method used in Lattice calculations
and it is extensible to non zero energy in the effective range approximation.



